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Abstract. Glauber’s theory has been adopted to calculate the total heavy-ion reaction cross-sections at
high energies. At relatively low energies, Glauber’s total reaction cross-section has been modified in order
to take into account the Coulomb field effect and is called modified Glauber model I. In addition to the
Coulomb field effect, the nuclear effect has also been taken into account in the Glauber model and is
called modified Glauber model II. An analytical expression for the transparency function for heavy-ion
reactions, involving the nuclear densities of the colliding ions and the nucleon-nucleon cross- section, has
been obtained within the framework of the modified Glauber models I and II. The transparency and the
total reaction cross-sections of the 12C + 12C collisions are calculated at different bombarding energies.
The obtained results are in good agreement with the experimental data and with previous theoretical
calculations.

PACS. 24.10.Ht Optical and diffraction models – 24.10.Lx Monte Carlo simulations (including hadron
and parton cascades and string breaking models) – 24.60.Dr Statistical compound-nucleus reactions –
25.70.Gh Compound nucleus

1 Introduction

The total reaction cross-sections for heavy-ions have been
studied extensively, both theoretically and experimen-
tally [1–10] for a long time. The total reaction cross-section
is one of the most fundamental quantities characterizing
the nuclear reactions [9–12]. At high energies, the Glauber
model [13] has successfully described the heavy-ion re-
action cross-section based on the independent individual
nucleon-nucleon collisions in the overlap zone of the col-
liding nuclei. This model has been extended to low en-
ergies by taking into account the effect of the Coulomb
field which let the straight-line trajectory of the collid-
ing nuclei to be deviated [14–22]. This approach is called
the Coulomb-modified Glauber model or the modified
Glauber model I. Then, this model has been refined [21–
23] to take into account the nuclear-potential effect on the
trajectory. This formalism is referred to as the modified
Glauber model II and has been applied satisfactorily to
the elastic-scattering reaction 16O + 12C and 16O + 28Si
at ELab = 1503 MeV [22].

In the present work, the elastic scattering of 12C +
12C at different energies is studied using both the mod-
ified Glauber models I and II. Section 2 deals with the
formalisms of both models. The calculations and results
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are given in sect. 3. Discussion and conclusions are pre-
sented in sect. 4.

2 Theory

The standard Glauber form for the reaction cross-section
at high energies, where the Coulomb effect plays no sig-
nificant role is expressed [8,17,19,24–27] as:

σR = 2π

∫ ∞

0

bdb[1 − T (b)] , (1)

where T (b), the transparency function, is the probability
that at an impact parameter b the projectile pass through
the target without interacting. This function T (b) is cal-
culated in the overlap region between the projectile and
target where the interactions are assumed to result from
single nucleon-nucleon collision and is given by

T (b) = exp(−σNNκ(b)) , (2)

where σNN is the nucleon-nucleon total cross-section and
κ(b) is the overlap integral of the nuclear densities along
a straight line characterized by the impact parameter b.
For light nuclei with A ≤ 40 [24], the density distribution
is assumed to be Gaussian [14–17,23,24,26]:

ρi(r) = ρi(0) exp(−r2/a2) ; (i = P,T) (3)
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where ai and ρ(0) are the diffuseness and the central nu-
clear density, respectively; both are treated as free ad-
justable parameters to reproduce the experimental nuclear
surface, since most of the reaction cross-section comes
from the surface region:

ρi(0) =
A

(ai
√

π)3
(4)

and the diffuseness, a, is related to the root-mean-square
radius 〈r2〉1/2 [17,24] by

a = 0.8165〈r2〉1/2 . (5)

The nuclear density (eq. (3)) is considered for both pro-
jectile and target. Therefore, the integral, given in eq. (5),
can be evaluated analytically, giving the expression

T (b) = exp
[
−κ0 exp

(
− b2

a2
P + a2

T

)]
, (6)

where κ0 is given by

κ0 =
π2σNNρP(0)ρT(0)a3

Pa3
T

a2
P + a2

T

. (7)

The nucleon-nucleon total cross-section σNN is averaged
over the experimental proton-proton and proton-neutron
total cross-section through the relation [17,23,26,28,29]

σNN =
(ZPZT + NPNT)σpp + (ZPNT + ZTNP)σpn

APAT
,

(8)
which has the proton-proton cross-section σpp, equal
to the neutron-neutron cross-section σnn and where
AP, AT, ZP, ZT and NP, NT are mass, charge and neutron
numbers for the projectile and the target, respectively.

The Glauber model agrees very well with the exper-
imental data at high energies. However, this model fails
to reasonably describe the collisions induced at relatively
low energies. This disagreement is due to the significant
role played by the Coulomb repulsive potential whose ef-
fects are obvious in the low-energy range. Such a Coulomb
effect breaks the characteristic Glauber assumption that
the projectile travels along straight-line trajectories.

Several attempts have been made to include the
Coulomb effect into the Glauber formalism [2,14,15,18,
19,28]. The most successful approach, based on the WKB
approximation for the phase shifts, replaces the impact
parameter b in the transparency function T (b) in eq. (1)
by the distance b′ of the closest approach of the deviated
projectile trajectory due to the Coulomb effect. Therefore,
by substituting the transparency function T (b′) for T (b)
in eq. (1) with b′(b), being the classical distance of the
closest approach, thus the reaction cross-section can be
expressed [8,19,21,26] as

σC
R = 2π

∫ ∞

0

bdb(1 − T (b′)) . (9)

The parameter b′ corresponds to the distance of the closest
approach along the Coulomb trajectory, and is related to
the impact parameter b according to [14–16,20,21,23,26]:

b′ =
1
k

(
η +

√
η2 + k2b2

)
, (10)

which is the solution of the equation

1 − 2η

kb
− L2

k2b2
− Vn(b)

E
= 0.0 , (11)

where E is the kinetic energy in the centre-of-mass system,
L is the angular momentum, Vn(b) is the real part of the
optical potential, k is the projectile wave number and η is
the Sommerfeld parameter defined [14,15,19,23,26] as

η =
ZPZTe2

h̄v
. (12)

When the real part of the optical potential Vn(b) is
taken to be zero, eq. (10), which is a solution of eq. (11)
can be rewritten as

b2 =
(

1 − VC(b′)
Ecm

)
b′2 , (13)

where VC(b′) is the Coulomb potential at a distance b′
from the center of the target and is defined as

VC(b′) =
1.44ZPZT

b′
=

ηh̄v

b′
. (14)

If we replace VC(b′) by its value VC at the strong ab-
sorption radius, then, eq. (13) becomes

b2 =
(

1 − VC

Ecm

)
b′2 . (15)

The strong absorption radius Rsab is defined as the dis-
tance for which the transparency function T (b) = 1

2 , i.e.
the distance where the incident particle has the same prob-
ability to be absorbed as to be reflected. The strong ab-
sorption radius Rsab is given by [26]:

R2
sab = (a2

P + a2
T) (ln κ0 + 0.3665) . (16)

Taking into consideration eq. (15), then eq. (9) becomes

σC
R = 2π

(
1 − VC

Ecm

) ∫ ∞

0

b′db′(1 − T (b′)) . (17)

From this equation and eq. (1), we find that

σC
R =

(
1 − VC

Ecm

)
σR . (18)

Using a similar procedure, eq. (11) can be solved tak-
ing into consideration the effect of the real part of the
optical potential Vn(b). So, at the strong absorption ra-
dius, the distance of the closest approach in the presence
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Table 1.

E/A (MeV) 25 30 38 40 49 85 94 120 200 342.5
σNN (fm2) 24.1 19.6 14.6 13.5 10.4 6.1 5.5 4.5 3.2 2.84
αNN 0.85 0.87 0.89 0.9 0.94 1 1.07 0.7 0.6 0.26

of the nuclear and Coulomb fields is given by the following
expression:

r2
CN = b2/

(
1 − VC

Ecm
− Vn

Ecm

)
. (19)

Therefore,

σCN
R = 2π

(
1 − VC

Ecm
− Vn

Ecm

) ∫ ∞

0

rCNdrCN(1− T (rCN)) .

(20)
Then,

σCN
R =

(
1 − VC

Ecm
− Vn

Ecm

)
σR . (21)

It is clear that eqs. (18) and (21) represent the total reac-
tion cross-sections for the modified Glauber models I and
II, respectively. The potential Vn is taken in the Woods-
Saxon form as [23]:

Vn = −V0 /

(
1 + exp

(
Rsab − rV (A1/3

P + A
1/3
T )

aV

))
.

(22)

Fig. 1. The transparency function T (b) as a function of the im-
pact parameter for different bombarding energies ranged from
25 MeV/nucleon up to 200 MeV/nucleon of 12C + 12C colli-
sions.

3 Calculation and results

In the present work, the elastic scattering of 12C + 12C
at different bombarding energies ranged from ELab =
25 MeV/nucleon to 342.5 MeV/nucleon is studied. The
calculations are done for the original Glauber model
(eq. (1)), the modified Glauber model I (eq. (18)) and
the modified Glauber model II (eq. (21)). The calcula-
tions of the total reaction cross section imply the cal-
culation of the transparency function T (b) deduced from
eq. (2). The Gaussian density distributions are considered
(eq. (3)) for both projectile and target with the parame-
ters ρ0(0) = 0.2974 fm−3 and a = 1.935 fm [17].

The averaged nucleon-nucleon cross-sections σNN are
given in table 1 [15,17].

The transparency function T (b) is calculated for dif-
ferent energies. The results of the calculations at energies
300, 1020 and 2400 MeV are plotted in fig. 1 as a function
of the impact parameter b. This figure shows that for the
relatively high energies (200 MeV/A), T (b) tends to zero
faster than for the relatively lower energies (25 MeV/A).
However, a saturation value unity for impact parameter
around 8 fm has been observed for all cases. The effect

Fig. 2. The transparency function T (b) for the original
Glauber model is given by the dashed curve, while the solid
curve represents the transparency function for the modified
Glauber model I for the energy 25 MeV/nucleon.
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Fig. 3. The transparency function of the modified Glauber
model I for different bombarding energies ranged from
25 MeV/nucleon up to 200 MeV/nucleon.

of the Coulomb field for the bombarding energy 300 MeV
(25 MeV/A) is shown in fig. 2. The effect of the Coulomb
field on the transparency function is to reduce it to zero
faster for low impact parameter. Similar results are shown
in fig. 3 for different bombarding energies. The distance of
the closest approach is drawn versus the impact parame-
ter b for different bombarding energies as shown in fig. 4.
From this figure, it is clear that the distance of the closest
approach is inversely proportional to the energy.

The interaction radius R is related to the reaction
cross-section by the formula [30]

R =
η

k

[
1 +

(
1 +

k2

η2

σR

10π

) 1
2

]
, (23)

where η

k
= 0.72ZPZT /Ecm . (24)

By substituting the calculated reaction cross-section
σR and the modified reaction cross-section due to the
Coulomb field σC

R into eq. (23), various values for the in-
teraction radius R can be extracted. The relation between
R and E

−1/3
cm for the 12C + 12C collision is shown in fig. 5.

One notes that the dependence of R on the energy is weak
(R ∝ E

−1/3
cm ) at low energies and becomes stronger at in-

termediate energies. One sees that the nucleus-nucleus re-
action cross-section is controlled by the mean field at low
energies and by nucleon-nucleon interaction at intermedi-
ate energies.

The total reaction cross-sections are calculated tak-
ing into consideration the effects of the modified Glauber

Fig. 4. The distance b′ of the closest approach as a function
of the impact parameter b for energies: E = 30 MeV/nucleon
(solid line) and 85 MeV/nucleon (dotted line).

Fig. 5. The interaction radius R as a function of bombarding

energies, E
−1/3
cm , for the 12C + 12C collisions; the dashed curve

is for the case of the original Glauber model, while the solid
curve is for the modified Glauber model I and the open circle
is for the experimental values [30].

models I and II. The obtained results for the calcula-
tions of the reaction cross-section without modification
and with the modified Glauber I are shown in fig. 6. The
resultant σR decreases systematically. This indicates that
σR is sensitive to σNN. The obtained results are in good
agreement with the experimental data [10] and with the
other theoretical calculations [29]. The modifications im-
prove the resulting total reaction cross-section. The effect
of the modified Glauber model II is shown by calculat-
ing the real part of the optical potential (eq. (22)). In
this work, the calculations are done for ELab = 360 and
1020 MeV. The parameters of eq. (22) for the energies 360
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Table 2.

E (MeV) V0 (MeV) rV (fm) aV (fm) σR (mb) σC
R (mb) σCN

R (mb) σexp
R (mb)

360 120 0.79 0.7 1261.94 1203.4 1223.52 1315 ± 40
1020 120 0.71 0.84 987.34 968.95 984.55 984.55

Fig. 6. The energy dependence of the total reaction cross-
section for the 12C + 12C collisions. The dashed curve is for
the original Glauber model while the solid curve is for the
modified Glauber Model I. The experimental values are shown
as open circle [30].

and 1020 MeV are given in table 2. The resulting values for
the total reaction cross-section σR, modified total reaction
cross-section due to the effect of the Coulomb trajectory
σC

R and the modifications due to both the Coulomb and
nuclear effects σCN

R are also given in table 2. The experi-
mental nucleus-nucleus σexp

R are given in the last column
of table 2. It is clear from the results given in table 2,
that the total reaction cross-section σCN

R for the modi-
fied Glauber II is very close to the experimental values
especially for E = 85 MeV/nucleon. This means that the
modified Glauber II improves the resultant reaction cross-
sections.

Within the Glauber model [13], one can obtain, from
the phase shifts, the nucleus-nucleus optical potential V (r)
for the values of the distance of closest approach for which
b′ � b according to the integral transform [14,15]:

V (r) =
2h̄V

πr

d
dr

∫ ∞

r

δ(b′)
(b′2 − r2)

1
2
b′db′ , (25)

where
δ (b′) =

1
2

σNN (αNN + i)κ (b′) , (26)

where αNN is the ratio of the real to the imaginary part
of the forward nucleon-nucleon scattering amplitude. In
the optical limit, this ratio is also the ratio of the real to
the imaginary part for the nucleus-nucleus complex phase
shift and the same for the optical potential [17]. It ex-
presses the relative importance of the refraction compared
to the absorption in the nucleus-nucleus amplitude. The
values σNN and αNN, associated with microscopic nucleon-
nucleon scattering, have been obtained by interpolating

Fig. 7. The real part of the optical potential obtained in the
modified Glauber model I for different bombarding energies.

the experimental values at the corresponding energies.
These parameters are given in table 1. The value of κ(b′),
defined in eq. (26), is given by

κ (b′) = κ0 exp

(
− b′2

a2
P + a2

T

)
, (27)

where κ0 is given by

κ0 =
π2ρP(0)ρT(0)a3

Pa3
T

a2
P + a2

T

. (28)

Therefore, the real part of the optical potential obtained
is:

Vreal(r) = −π3/2
�vρP(0)ρT(0)a3

Pa3
TσNNαNN

2(a2
P + a2

T)3/2

× exp
(
− r2

a2
P + a2

T

)
. (29)

The calculations of eq. (29) at different bombarding en-
ergies from 300 to 4110 MeV, are shown in fig. 7. This
figure shows that the results for the real potential for the
modified Glauber I, are deeper for low energies than for
higher ones.
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Fig. 8. The theoretical elastic-scattering differential cross-
section for 12C + 12C system at ELab = 300 MeV. The dashed
curve is for the standard Glauber model, while the solid curve
is for the modified Glauber model I. The experimental data [31]
are shown as solid circles.

Fig. 9. Elastic angular distributions for the scattering of the
12C + 12C collisions at ELab = 360 MeV. The dashed curve
is for the standard Glauber model while the solid curve is for
the modified Glauber model I. The experimental values [7] are
shown as a dotted curve.

The calculated elastic-scattering differential cross-
sections for the 12C + 12C at energies 300 and 360 MeV are
shown in figs. 8 and 9, respectively. The obtained results
are show a reasonable agreement with the experimental
data [7,31]. Therefore, one can conclude that the modi-
fied Glauber models provide a suitable description of the
data for the elastic scattering of the 12C + 12C collisions
at ELab = 300 and 3660 MeV.

4 Discussion and conclusions

In the present work, analytical expressions for the heavy-
ion reaction cross-section within the framework of the
Glauber model are presented. The reaction considered
here, is the 12C + 12C collisions at bombarding ener-
gies ranging from 25 up to 342.5 MeV/nucleon. The den-
sity of this nucleus is considered to be of Gaussian form.
The description of the trajectory is modified by taking
into consideration the effect of the Coulomb field, i.e., the
modified Glauber I. The nuclear field in addition to the
Coulomb filed is also taken into consideration, i.e., the
modified Glauber II. Both modifications improve the de-
scription of the total reaction cross-section. This has been
done by evaluating the transparency of the target towards
the projectile at the distance of the closest approach of the
deviated projectile trajectory.

It is well known that the nucleus-nucleus elastic scat-
tering is essentially determined by a small range of impact
parameters, corresponding to the surface collisions. Nu-
clear transparency is an effect associated with the nuclear
surface, which is diffuse. The lower partial waves are to-
tally absorbed as illustrated by the transparency function
T (b). In the surface region, the nuclear potential and also
the Coulomb potential (about 8 MeV) are small compared
to the kinetic energy. Therefore, the straight-line trajec-
tory assumption is certainly a reasonable approximation.
For smaller energies E/A = 25 and 30 MeV, the opti-
cal model analysis shows that the absorption is so strong
for values of b less than 5 fm that the partial waves in
the region of the nuclear rainbow can hardly contribute
to the cross-section. The situation is rather different for
energies greater than E/A = 85 MeV where the total
absorption takes place at smaller impact parameter. At
E/A = 85 MeV and greater, the nuclei densities have more
overlap and then higher-order effects, such as nucleon cor-
relation, probably become important. For energy range
E/A = 100–200 MeV, the transparency of the nuclei is
supposed to increase. It is found from these calculations
that the distances of the closest approach are inversely
proportional to the energies.

One can, therefore, conclude that it is possible to give
a satisfactory account of the elastic scattering of heavy
ions at relatively low energies within the Glauber model
by releasing the straight-line condition. The usual Glauber
formula applies, but the overlap integral must be correctly
evaluated taking into account the distortion of the trajec-
tory due to both the strong Coulomb field and the nuclear
field. The success of this model is due to the fact that one
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has been able to evaluate the overlap integral over the ac-
tual heavy-ions trajectories. Thus, it may be concluded
that the modified Glauber models I and II have been ex-
tended to study the heavy-ion elastic scattering at low
energies and have improved the results of the calculations
of the elastic scattering and the reaction cross-sections.
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